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CONVERGENCE PERFORMANCE OF ADAPTIVE DETECTORS
PART 3

1.0 INTRODUCTION

In Ref. 1, two schemes for adaptive detection were compared: Kelly's generalized likelihood
ratio test (GLRT) [21 and the mean level adaptive detector (MLAD). Detection performance PD was
predicted for the two schemes under the assumptions that the input noises are zero-mean Gaussian
random variables that are temporally independent but spatially correlated, and the desired signal's
amplitude is Rayleigh distributed. P0 was computed as a function of the false alarm probability, the
number of input channels, the number of independent samples-per-channel, and the matched filtered
output signal-to-noise (S/N) power ratio. The GLRT was shown to have better detection performance
than the MLAD. The difference in detection performance increased as one used fewer input samples;
however, the required number of samples necessary to have only a 3 dB detection loss for both detec-
tion schemes is approximately the same. This is significant since, for the present, the MLAD is con-
siderably less complex to implement than the GLRT.

The general problem of signal detection in a background of Gaussian noise for an adaptive array
was first addressed by Kelly [2] by using the techniques of statistical hypothesis testing. In Ref. 2,
the problem is formulated as a binary hypothesis test where one hypothesis is noise only and the other
is signal-plus-noise. A given input data vector (called the primary data vector) is tested for signal
presence. Another set of signal-free data vectors (called the secondary data vectors) is available that
shares the unknown covariance matrix M of the noise in the primary data vector. A likelihood ratio
decision rule was derived, and its performance was evaluated for the two hypothesis.

Kelly's detector uses the maximum likelihood (ML) estimates for the unknown parameters of the
likelihood ratio test (LRT). The unknown parameters are the spatial covariance matrix and the
unknown signal's complex amplitude (assumed in Kelly's analysis to be a nonrandom constant). This
detection scheme is commonly referred to as the GLRT and is referenced in this report as such.

A less complex adaptive detection scheme is found by implementing MLAD. The MLAD is
essentially an adaptive matched filter (AMF) followed by a mean level detector (MLD) [3,4]. Input
samples used in determining the MLD threshold are derived from a block of data passing through the
AMF. This same block of data is used to calculate the AMF weights. The squared magnitude of
each of these same samples as processed through the AMF is used as a test statistic and compared
against an MLD threshold (an average of the instantaneous powers) that does not contain the given
test statistic sample. We further clarify the implementation terminology by calling this an MLAD
with concurrent data samples. In Ref. 5, an analysis was performed for an MLAD with noncon-
current data, i.e., the block of data that passes through the AMF that is used to determine the MLD
threshold is statistically independent of the block of data used to calculate the AMF weights.

We note for both Kelly's GLRT and the MLAD that, under the above stated assumptions, the
PF does not depend on M (a second order characterization of the external noise environment). Hence
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KARL GERLACH

detectors exhibit the desirable constant false alarm rate (CFAR) property of having the PF be indepen-
dent of the covariance matrix.

Here we extend the results of Ref. I to include the effects of what we term "desired signal con-
nutanation. '3 t-hes We mean mthat a ai;iiiicait level of a uesicu signai is Iresnt antab tiuaky

data vectors, which, for both Kelly's GLRT and the MLAD, are used to estimate the unknown
covariance matrix M. We assume that the contaminating desired signal is statistically independent of
the desired signal in the primary data vector. In practice, contamination can be caused by a variety of
mechanisms. such as for the radar nrohlem- multinle target returns being nresent at different ranges nf

the pulse compressor output. In this case, a number of the multiple target returns at distinct times
that have the desired signal's waveform may be in the secondary data.

For our analysis, we simplify the contamination model by only considering a single source of
contamination. In addition, this single source contaminates only one sample vector of the secondary
data vectors. Two performance measures are affected: P0 and PF. Because PF is normally chosen
under the condition of no contamination, we redesignate the probability of false alarm in the presense
of contamination as the ghosting probability PG. We do this since ghosts (in the radar sense} are
desired signal-induced false detections.

Here we present results on the detection and ghosting performance of GLRT and MLAD in the
presence of contamination. As in Ref. I, we assume that the complex desired signal amplitude is a
complex zero-mfnean Ga1iussian random variahbe (r..) of unknowan variance wuith in de,-nk-nt and idenm
tcally distributed (i.i.d). real and imaginary parts (the magnitude of this amplitude is Rayleigh dis-
tributed). Under the GLRT, we would have to reformulate Kelly's detector with the variance of the
unknown signal amplitude as an unknown parameter, and find the ML estimate of this quantity. This
proved to be mathematically tedious. In lieu of implementing this new GLRT, we choose to evaluate
Kelly's GLRT, as it is defined in his paper. As noted by Kelly, no optimality properties are claimed
for this test. The form of the test is, however, reasonable.

2.0. GENERALIZED LIKELIHOOD RATIO TEST

2.1 Detector Form

A mathematical formulation of the adaptive detection problem that leads to the GLRT is given
by Kelly [2j. we now summarize mar formulation. Two sets of input data are used, called tne pri-
mary and secondary inputs. The secondary inputs are assumed not to contain the desired signal. Set

X = N x K matrix of secondary input data. The nth row represents the K samples of data
on tue ntn channel, where n = 1,i2,...,Ny. Tne samples in me ktn column are
assumed time-coincident.

x = primary data vector of length N.
s = desired steering vector of length N.

Consider the two hypothesis:

Ho x = n, and (1)

x = n + a s, (2

2
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where HO is the noise only hypothesis, n is a noise vector of length N, HI is the signal-plus-noise
hypothesis, and a is the unknown complex signal amplitude. We make the following assumptions:

(Al) Input noises are complex zero-mean stationary Gaussian r.v.'s. The real and imaginary
parts of a given input noise sample are i.i.d. with respect to each other (an r.v. with these
characteristics is called a circular Gaussian process).

(A2) Innut noise samples are temnorallv statistically independent.

(A3) The secondary data is statistically independent of the primary data.

(A4) K Ž N.

The GLRT is formulated as follows. The joint probability density function (PDF) under each
hypothesis over all measured data is found. For this problem, this is straightforward, since the sam-
ple vectors are assumed independent and each vector has an associated N-dimensional Gaussian PDF.
if tmere are any unknown parameters, the Pur of the inputs is maximized over all unknown parame-
ters separately for each of the two hypotheses. The maximizing parameter values are by definition
the ML estimators of the parameters. Hence the maximized PDFs are obtained by replacing the
unknown parameters by their ML estimates. The ratio of the resultant maximum of PDFs is found
(the ratio of the PDF under HI to the PDF under Ho). This ratio is checked to see if it exceeds a
preassigned threshold t.

Kelly shows that the GLRT for the adaptive detection problem is given by

HI

-~-I t, 3Us R I Hl <
(SHR s)[1 + XH R xI < ' ()

HO

where

R. = NH (4)

and H denotes the conjugate transpose matrix operation. We recognize Rx as proportional to the ML
estimate of the input covariance matrix. We note also that the desired signal's unknown complex
amplitude a has been estimated and is accounted for in Eq. (3). The elements of Rx are r.v.'s that
are functions of the input samples (the elements of X). It is straight-forward to show that the proba-
bilistic measure of the set of X, for which Rx is singular, is zero, Hence, when assessing detection
performance, we can always assume that l? (or any other matrix that has the form given by Enq (4))
is invertible.

For the signal contamination model, we make the additional assumption:

(AS) A statistically independent desired signal is always present in the secondary data under Ho
or H1 . It is only present on the Kth sample vector (the Kth column of X).

For (A5), the choice of which secondary sample vector in time is contaminated is arbitrary and does
riot affect WVe an11ybis.

3
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2.2 Statistically Equivalent GLRT

In Ref. 1, a statistically equivalent GLRT was derived that was used to formulate in simple
fashion the PD and PF probabilities of the adaptive detector with no signal contamination. With one
modification of the development in Ref. I, we can derive a statistcally equivalent GLRT that will
allow us to formulate the P0 and Pg for the adaptive detector with signal contamination (which is
modeled as given by (AS)). We briefly outline the methodology used to obtain the statistically
equivalent GLRT.

As in Kelly's (and Reed, Mallet, and Brennan 161) development, we can matrix transform the
input vectors by an N x N matrix A, which has the properties that the input noise vectors are spa-
tially whitened, each input element has noise power normalized to one, and

As = (0, 0 ,Q0,(SH M1 S)1I2) = (5)

where all of the desired signal has been placed into N th channel (note that in Kelly's paper, the signal
was placed into the first channel; for our analysis, we place the signal into the N th channel.

In addition, set

z = Ax, and (6(a))

Z=A. (6(b

The element of vector z (under H0 ) and the elements of the vectors representing the columns of Z
(each column represents the transformed secondary data across the array at a given instant of time>
are now spatially independent with each element having power equal to 1. As shown by Kelly, the
trtmncfrm.rmc CU1 PT k icraxnn hK

H1

( SR iso) (l + zH RZZ) (7

where R H (8)

We note that the desired signal contamination of the secondary data is completely contained in the
N, K element of Z.

In Ref. 1, we show that by using a series of unitary matrix transformations (K x K transforms
on Z and an N x N transform on z), the following statistically equivalent GLRT results:

H1

Ul u2 v - VI a 21 I2 < (uj 1 + VIf) u22T (9)

Ho

4
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where

-T- l t (10)

and UTI a2 1 ,U 2 2 ,V1 , and v2 are independent r.v.'s. Furthermore, al1 has the x PDF of order
2(K - N) with u2 = 0.5, v1 has the X PDF of order 2(N - 1) with &2 = 0.5 under Hi, v2 is the
sum of the desired signal in the primary data plus a circular Gaussian r.v. with power equal 1, and
au21 is a circular Gaussian r.v. with power equal 1. In addition, if we adopt the notation of Ref. 1,
then

K= r lz,' (11)
k=N

where z$k-$), k = N,N + 1,... ,K - 1 are i.i.d. circular Gaussian r.v. with power equal 1 and
Fz'j) is the sum of the contaminating desired signal plus a circular Gaussian r.v. with power equal

1.

We use the statistically equivalent GLRT given by Eq. (9) and the aforementioned probabilistic
characterizations of a 11,U 21 ,u2 2 ,v I and v2 as the starting point for our analysis.

2.3 Probability of Detection

Under the H1 hypothesis, we assume that the primary vector's desired signal's amplitude (or
magnitude) is Rayleigh distributed and the signal's phase is uniformly distributed between (0,2ir).
This implies that the desired signal itself is a complex circular Gaussian r.v. Let the desired signal's

input power-per-channel before any matrix transformation be equal to aS. After the A matrix
transformation (whitening, normalizing, and placing the signal into the N th channel), the signal
power in the N th channel is cr _2 sH M- s. Thus under H 1 ,v 2 is a complex circular Gaussian
r.v. with power equal to c4 + 1, where the 1 represents the noise power-level-per-channel after the A
matrix transformation. In similar fashion, let the contaminating desired signal's input power-per-
channel before any matrix transformation be equal to a,. Again we assume the contaminating desired
signal's amplitude is Rayleigh distributed with phase uniformly distributed between (0,27r). After the
A transformation, ac. = s2 5 H M-' s. Thus under Ho or H 1 , 1) is a complex circular Gaussian

r r.v. with power equal to ur2 + 1, where again the I represents the noise power-level-per-channel after
the A matrix transformation.

Recall that U21 is a complex circular Gaussian r.v. with power equal to 1. We can rewrite Eq.
(9) as

H1

.. 12 jy < T' (12)

Ho

where

UllV2 -VIa 2 1
(ac(oj + 1) + v2)'12 and (13)

T' ls = I ) + 2T. (14)
2f1 (2 + 1) + V1 2

5
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It is straightforward to show that a, when conditioned on uI and vI, is a complex circular Gaussian
r.v. with power equal to 1. It is well known [7] that the conditional probability of detection is given - - - -
by

2~~~~~~~~~~~~~~~~... .I-

P(DlIaxu 22 ,v1 ) = e = exp

-' ___ ain ~I - %~ I I - I . .wh1ere PnD I -) udenotes the conditional probability of detection,

We set

It =I ,221

8 +V2 2 a1 1 + VI U22T

2,(2+ 1) + Vj 

AD = all2
= 1 1 ,

V= V2, and

V

IL

Then Eq. (15) becomes

P(D r, 7) =
r

exp f- Z +1+r T} (20)

The PDFs of a and N are v2 of order NWK - + 2) anid 2(N - I) resrp-ectivelAy wiVth -2 - n A_
are given by

P (it) = I K - N + I e-
(K- N + 1)! A t

,j >Ž0, and

. . . .

(2 t)~~~~~~~~~~~~~~~~~~

pV(V) = (N - 2)! V e ,V => 0, (22) -
The PLF of q is derived in the Appendix and is given by

I

(as ± 1iK - N - i)i
aSK-N e -r/I + '.) j X.K-N1-I eXp [ -

*LI L
Xiq 2 d

F f, + I)

,7 > 0.

By using elementary probability theory, it is straightforward to show that

p,(r) = S6 4r (ft)p" | d$.

6

(15>

/ I £%

(17)

.. . . .. . . .

... .. . .....~~~~~~~~.......

PI%() =

(23) . ' . :'

(24)

. .. .... ........... _-.. -..........-. .. �

...

. ..- - - . ......' ------
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By inserting expressions for pl, and Pv as given by Eq. (21) and (22), respectively, and simplifying
results in the following expression for Pr:

p(r) = (N-2)!(K-N + 1)! (1 + r)K r (2)

If we set q = 1/(1 + r), it is straightforward to show that

K!)I 2K- I
Pq q = (N-2)!(K-N + 1)! (1 q) qK N + 1 0 - q Žt 1, (26)

which is the POF derived by Reed et al. [6] for the normalized instantaneous S/N power ratio and
which results if the sampled matrix inversion (SMI) algorithm is used. By substituting q for r in
Eq. (20),

p(D I qAq) = exp- [ T (27)

If we multiply Eq. (27) by the PDF of tq as given by Eq. (23) and integrate over the support of n, it
is straightforward to show

p(D Iq)C= K-N | xK-N 1dX (28)
F T + K-
~qa +t +a2± j

Thus

It VL= r P(D I ) /Y\Jq (29)

where pq(q) is given by Eq. (26). We set (S/N) Op = ur, where (S/N)Xp is the optimal S/N output
power ratio of the matched filter (K = co). We can write this in this way because the output noise
power of the N th channel has been normalized to 1 and the output of the N th channel is the optimal
matched filter output. We also set (S/N).0 . = au where (S/N) 0̂n is the contaminated S/N output
power ratio of the matched filter (K = A).

2.4 Probability of Ghosting

The probability of a ghost is easily derived from Eqs. (28) and (29) by setting 4 - 0. It is
found that

K-N 1xK -N -1dX
PG0 = 2 I C + X 2 K-N+I (30)G + 0 T 

If we set r2= 0, then

(T + 1 
PG = P= (31)(T + I)K-N+I

7
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which is the probability of false alarm for the GLRT derived in Ref. I under the condition that there
is no contamination.

3.0 MEAN LEVEL ADAPTIVE DETECTOR

3.1 Detector Form and Statistically Equivalent MLAD

In Ref. 1, an MLAD was formulated for the adaptive detection problem. In this subsection, we
briefly review this formulation for the MLAD and give a statistically equivalent form that will be
used to obtain results for P 0 and PG.

An intuitive form of adaptive detection is found by implementing the MLAD. The MLAD is
AI Tgflr011 - Arr MY 1A~ - -- Al '- I - -~M Ar - AJ ---- J - __essentially an tuvir jon1owed by aft W ILAIJ as ilrustrated in rig, 1. The MLAV is aesigueu to per-

form detections over a block of data by using just this block of data in determining the AMF weights
and the MLD threshold. The MLAD works as follows. Let there be N channel and K + I samples
per channel. Define

x = primary N -length data vector;

Xk = secondary N-length data vector, k = 1,2, . . .,K,

Xaig = (X I X) = augmented N x (K + 1) matrix of input data, and

XH
au= Xag X aug

The N -length weighting vector W~ for the AMF is found by using the SMI algorithm and is given by

W= R0 S. (3-2

This weight is used in the detection rule given by

H1

K
To E [WXk (33>

Ho

where To is chosen to control the false alarm probability. We see that Eq. (32) is the algorithmic
representation of the AMF and Eq. (33), the MLD.

Note that we have included the primary data vector in the Ro estimate and, hence, in the wv esti-
iiitta~ TIL a pLract.iaI MituattMtIV, LtLl LJUs t.L UC UILULIC7 MLfC IL i IIIUI V IIULV UILsd1Iey IZULIRAUL LU t ;UIIIpUe
one weighting vector over the entire data block than it is to compute a distinct weighting vector for
each point in the block. However, the presence of the desired signal (under HI) will affect detection.
In Eq. (33), the primary data vector is varied across the K + I data snapshots, where the xkt used on
the right side of Fo (33' does not include, a selerted primary data vector.

8
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SENSORS

IF GREATER, CHOOSE H

ELSE, CHOOSE Ho

Fig, I - Mean level adaptive detector

In Ref. 1, it is shown that equivalent form of Eq. (33) is

Hi

| s 1 2 > I <l H L RX X+ R 2 + I H i 1 2 + XH h-1

Ho

where

= To + 1
(34)

(35)

and

(36)

Also, 0 c T 1 c1.

9

ADAPTIVE
MATCHED

FILTER
(A= A-1(W=Rx s)

R, = Ro - XXH.
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Furthermore, it is shown in Ref. I that a statistically equivalent MLAD is given by

[UlIv 2 - VIU21 - T
1 IL + +1] C Li + j2

2 1 (37

where ll 11 u72 1 ,Z2eVI, and V2 are as probabilistically characterized in Section 2.2.

We note for T, > O that if

I V±4I sO , (

then Ho is declared.

3.2 Probability of Detection

Again under the HI hypothesis, we assume the primary vector's desired signal and the contam-
inating desired signal are complex circular Gaussian r v. (the amplitude is Rayleigh distributed)> As
in our analysis of the GLRT, ur = a J2s Ml-1 s and U2 = a2 SH M-I s. Assume Eq. (38> is not
true. We can write the decision rule given by Eq. (37) as

T112 <T (39>)

Ho

where

112 - 121
= -2 1 - ' + 2 }f2

T' I ~(41>
(q - Tl)(q a + 1)

-1 is defined by Eq. (16), and q = (I + r)- 1. As before, under HjvI is a complex circular

Gaussian r.v. with power equal to ? + 1, and uzI is the same with power equal to 1. Furthermore,
a is the, same. with nnoer eoilq to 1. Thus

r if q c T,
P(D fI q) = ) e - otherwise. (42>

The PDFs of q and q are given by Eqs. (23) and (26), respectively. If we multiply P(D [ , ,> by
p44) and integrate over the support of -q, after some simplification, it will be found that for q > T1 ,

10
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P(D~q)= K-N 1X:KN -dXP(D I q) = 1 V- T 1 + }4 ] K-N+1 (43)

+ L(q-T)(q +2 +) 2+ 

Because P(D I q) = 0 for 4q T1, it follows that

P= ST P(D I q) pq(q) dq, (44)

where pq(q) is given by Eq. (26). Again we set (S/N),pt = as and (S/N),0 , = o,

3.3 Probability of Ghosting

The PF is found by setting (SIN)
0

p, = 0 in Eq. (43). The following equations result:

r~~~~~ X~~)K -N -idX e K N T, 7-+ 1 +5

P(G q)= (45)
L0 ,q C T

and
PG =Tj, P(G I q)pq(q)dq. (46)

If we set a2 = 0, it is straightforward to show that

PG = PF = (1- T, (47)

which is the false alarm probability of the MLAD derived in Ref. I under the condition that there is
no conarnination.

4.0 RESULTS

Here we present results for the detection probabilitv in contamination Pn and ghosting probabil-
itY PG for the GLRT and MLAD vs the independent parameters: the quiescent prob-
ability of false alarm (when there is no contamination) PF; the steady state (K = co) S/N output
power ratio of the matched filter (S/N)0 p,; the contaminated S/N power ratio (S/N)con; the number of
independent samples per channel K of secondary data; and the number of input channels N. We set
K = MN, where M is a positive integer > 2, and use M instead of K as an independent parameter
called the degrees-of-freedom factor.

Because there are many independent parameters, we present results for a representative set as
shown in Figs. 2 through 19. Here we nint Pt .A D- - (VIKTN fnr A = 2 5, 10 '20.

.~-AAIII 150 ULIU811 ~. 1~1~ %. LUL A V "Liut A ; Va ''If con jul IV X" iU IM JU,

pF = 10-6, 1o-', and M = 2, 3, .. .,6. For plotting PD, we choose (SIN)0 p, to equal either 20 dB
or 30 dB, where a given (SIN),,p will yield a steady state (K = m) PD, which is indicated by the
horizontal line in Figs. 10 through 19. For plotting PG in the steady state, P0 = PF, which is indi-
cated by horizontal line in Figs. 2 through 9.

11
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Fig. 2 - Kelly detector: PG for contaminated signal N = 2, PF = 1.0-6
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Fig. 3 - Kelly detector: PC for contaminated signal N = 5, PF = I.D-6
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Fig. 4 - Kelly detector: PG for contaminated signal N = 10, PF L.D-6
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Fig. 5 - Kelly detector: PG for contaninated signal N = 30, PF = 1.D-6
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We found that the PG performance results were identical for both the GLRT and MLAD and a
given set of input parameters. Thus, we give only the P0 performance results for the GLRT. Some
pertinent observations to be made from Figs. 2 through 19 are:

1. Both PD and P0 degrade monotonically with increasing contamination (S/N),0 n.

2. A small amount of contamination ((S/N).0 -10 dB) decreases PG. However, 10 dB of
contamination is necessary make PG decrease approximately by a factor of 10.

3. For most cases, P0 begins to significantly decrease in 10 to 20 dB of contamination.

4. For small M (2-6), the PG's are within a factor of five. This spread increases with
increasing N.

5. As noted in Ref. 1, PD monotonically increases with increasing M. For (S/N)c0 n = 0, the
steady state PD's are indicated by the flat region of each curve.

6. For PD, the GLRT and MLAD have similar relative performance trends.

One of the more significant results indicated by the curves is that the ghosting probability does
not increase in the presence of contamination. Hence, the CFAR capability of both the GLRT and
MLAD is not degraded in the sense that the false alarm probability (with contamination) is upper
bounded by the quiescent false alarm probability (no contamination). However, because P0 is
decreasing, inherently the detector's (MLAD or GLRT) variable threshold is increasing and, hence,
the detection probability decreases.

One final note. A simple solution to decrease the effects of signal contamination is to use a
large number of samples (make K or M large). However, we caution against this solution in that this
was a simplified analysis where only one sample vector was contaminated. Obviously, if we take
enough samples, the effects of this 'one sample can be significantly diminished by averaging over
many samples. In reality, making K large can result in even more signal contamination, since there
may be more opportunities for this to occur.

5.0 SUMMARY

Two schemes for adaptive detection, Kelly's generalized likelihood ratio test (GLRT) and the
mean level adaptive detector (MLAD), have been analyzed with respect to the deleterious effect of
desired signal contamination of the data used to compute the sampled covariance matrix for the two
detections. This effect can occur when more than one desired signal is present in the sampled data.
Detection probability PD and false alarm performance (ghosting probability PG) were predicted for
the two schemes under the assumptions that the input noises were Gaussian random variables that
were temporally independent but spatially correlated; and the desired signal's amplitude was Rayleigh
distributed Pm and Pa were commpted asaQ frnAction of the fales ala-r problity with noconta-~~~L. -- - LT~ -rat -- iv A -.- * "-"w.. F- L1[11 I>UL.7 WILDS 110 COsAM111-

nation PF, the number of input channels, the number of independent samples-per-channel, the
matched filtered output S/N power ratio, and the SIN of the contaminating desired signal. The P0
and PF were obtained for a number of representative cases.

It was found that both PD and PG decreased with increasing levels of contamination. The PG
performance was almost identical for the GLRT and MLAD. The PD performance for the two adap-
tive detectors showed similar relative performance trends. Significantly, it was shown that the ghost-
ing probability does not exceed PF in the presence of contamination. Hence, the CFAR capability of
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the GLRT or MLAD is not degraded in the sense that false alarm probability is upper-bounded by the
quiescent false alarm probability (no contamination).
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Appendix

THE PROBABILITY DENSITY FUNCTION (PDF) OF q

Starting with Eq. (11), we Write

K-1
71 = U22 - 1 Z~kl-) II2 + I ZWKT =k22 = I 1 Iz 12,

k =N
(Al)

where zN-') k = N + 1, ... ,k -1 are independently and identically distributed circular Gaussian
random variable (r.v.) with power equal to 1, and zt-1) is a circular Gaussian r.v. with power
eoual to uF + 1. Define

x = IZ@K71)12 , (A2)

K-1
Y = F, I Z~k-l I 2

k =N

and

L = K-N.

(A3)

(A4)

The PDFs of x and y are given by

Px2(X) = I L e+ x Ž- 0, and (AS)

Py(Y) = L1 - L-)e-Y; y Ž 0.
(A6)

Now

p45i) = 10 Px(A a) py(a)da

au Jda. (A7)
U2C + 1J

PJ(n) =(L - 1)!(u2 + 1) exp - Z j+ 1jot x exp - + 1 jdx.
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Ret X = I/n. Then

(AX)

r r
- (L 1 exp t - 2 q 10,7 'L -I Xp t -_ )!(ac2 + 1) orc + II


